Главная

Воздушные змеи

Воздушные шары

Модели парашютов

Бумажные модели самолётов

Модели планеров

Модели ракет

Резиномоторные модели самолётов

Кордовые модели самолётов

Таймерные модели самолётов

Радиоуправляемые модели самолётов

Модели самолётов с двигателем на СО2

Модели ракетопланов

Модели вертолётов

Самодельные самолеты

Самодельные вертолеты

Самодельные дельтапланы дельталеты

Двигатели для авиамоделей , самолетов, вертолетов, дельталетов

Самодельная аппаратура радиоуправления моделями

Мастерская авиамоделиста

Летательные аппараты-почему и как они летают

О воздухоплавании и воздухоплавателях

О планерах и планеристах

О самолётах и лётчиках

О вертолётах и вертолётчиках

Атлас профилей для авиамоделей

Ссылки на другие ресурсы

МОДЕЛЬ РАДИОУПРАВЛЯЕМОГО ПЛАНЕРА «РИЗЕР»

(часть-1)

Модель радиоуправляемого планера часть-1

Модель радиоуправляемого планера часть-2

История создания и развития новой радиоуправляемой модели планера не совсем обычна. Взять хотя бы причины, побудившие взяться именно за эту машину. Главными стали... своеобразный дух противоречия и одновременно уверенность в собственных конструкторских силах. Все остальное — доступность, технологичность, эксплуатационные и летные качества аппарата — определялось позже, уже в процессе проектирования и постройки модели, и, по сути, стало лишь следствием первоначального решения.

О том, к чему это привело, вы узнаете из предлагаемого материала. А сейчас можно выразить уверенность, что история двухлетней экспериментальной работы окажется не только интересной для «радистов» среднего уровня, но и более чем полезной. Ведь множество конструкторских приемов, найденных в данной разработке, с успехом может быть перенесено на любую другую авиамодельную технику. В качестве первоначальной точки отсчета нужно признать публикацию в итальянском журнале «Эко-Модель».

В ней рассказывалось об опыте переделки весьма популярной модели планера известной американской фирмы СИГ в электролет. Возможно, в ином случае «Ризер» — так называется этот планер — и не привлек бы внимания, так как машин подобного типа на Западе выпускается немало, если бы... в статье он не классифицировался как «экстремально легкий». Именно это и послужило запалом для взрыва конструкторского энтузиазма.

Упомянутая статья (довольно большого объема) сопровождалась множеством фотографий построенного электролета и, главное, уменьшенными до половины журнальной страницы сборочными чертежами исходного планера. Конечно, оригинал этих чертежей, комплектующий каждую набор-посылку, выполняется в натуральную величину. Но и уменьшенная копия благодаря высокому качеству печати позволяла разобраться в мельчайших деталях. Поэтому, высчитав масштаб для прорисовки «Ризера» (он относится к условному подклассу «двух-метровиков»), можно было начинать работу.

В «Эко-Модели» приводился ряд технических данных, из которых получалось: на собственно планер приходится всего лишь 450 г массы. Это в комплекте с двухканальным «бортом» (приемник, две микромашинки и блок аккумуляторов объемом 0,45 А-ч) дает общий взлетный вес в пределах 650—660 г. Может показаться: при площади крыла 39 дм2 и двух метрах размаха «Ризер» действительно экстремален по своим весовым параметрам.

Но упомянутый дух противоречия и манящая цель авиационного конструкторского идеала — при заданных габаритах и нормах прочности облегчить все до предела — не давали возможности оставить все так, как есть. И в результате размышлений появилось решение: для сравнимости результатов полностью сохранить внешние обводы «Ризера», а силовую схему пересмотреть в соответствии с собственными представлениями о прочности, весе и технологичности. Итогом прорисовок стал планер с новым фюзеляжем, измененным крылом и хвостовым оперением, близким к исходному.

Выигрыш по массе (а заодно и по технологичности и количеству использованной, дефицитной в наших краях, бальзы!) на крыле получен за счет следующего. Бальзовая рейка передней кромки уменьшена по сечению с 10x12 мм до 4,5x9,5 мм (при постоянном по размаху сечении выигрыш составляет примерно 9 г при плотности бальзы 0,12 г/см ; эта же величина плотности введена и во все последующие расчеты). Обшивка лобика снизу ликвидирована. Оставлена только верхняя, которая утолщена до 2,5 мм с одновременным снижением ширины.

Таким образом жесткая часть лобика теперь занимает 15 мм длины хорды против примерно 20—22 мм на прототипе. На летных характеристиках такое изменение отозваться не может. Зато выигрыш по массе составляет около 10 г. Сразу же отметим: вместо двух развитых по площади клеевых швов теперь один, причем очень узкий. Далее: ликвидированы все окантовки нервюр и компенсационные накладки на сосновых полках лонжеронов (общий выигрыш 9,5 г без учета клеевого шва протяженностью 10,4 м!).

Задняя кромка заужена ровно вдвое, что допустимо с точки зрения прочности при тщательном отборе бальзы и установке косынок на хвостиках нервюр с катетами 12 и 20 мм, выполненными из бальзы толщиной 2 мм (выигрыш по кромке 15,5 г, проигрыш на косынках 1,3 г). Кстати — косынки не только улучшают прочность соединения кромки с нервюрами, но и поддерживают бесполочные нервюры от прогиба. Знание теории работы крыла на изгиб позволило пересмотреть и лонжеронную часть.

Теперь вместо сосновых полок постоянным сечением 3,2x6,4 мм в центроплане установлены вверху полки 3,5x5,5 мм и внизу 3,5x3,5 мм, а на ушках — 2,5x5,5 мм вверху и 2,5x3,5 мм внизу при использовании высококачественной тяжелой прочной сосны. Выигрыш по массе 13 г. Желание создать легкую и притом высокопрочную конструкцию заставило, в отличие от прототипа, ввести на всем размахе крыла стенку лонжерона. В основном она выполнена из пластины пенопласта ПХБ толщиной 1,5 мм.

Этот материал, по плотности соответствующий хорошей бальзе, в данном применении представляется более выигрышным, так как не имеет склонности к растрескиванию вдоль волокон. В коренной межнервюрной секции каждой консоли стенка — из фанеры толщиной 2 мм, а в двух прилежащих — из полуторамиллиметровой и миллиметровой фанеры. При этом если все детали стенок отдельные и вклеиваются между нервюрами, то коренная — одна на обе половины крыла (она соединяет полки, лонжерона консолей при неразъемном крыле).

Сростка лонжерона в местах перехода центроплана в «ушки» сделана в соответствии с чертежами планера-прототипа. В центре же массивная фанерная вставка (ее вес более 10 г) упразднена в пользу узких пластин из полуторамиллиметровой фанеры, которые врезаются и приклеиваются к сосновым полкам опереди и сзади от лонжерона после сборки всего крыла. Ширина пластин соответствует высоте полок и равна 3,5 мм, их форма повторяет угол V крыла, а размах равен примерно 555 мм впереди и 253 мм сзади лонжерона.

Таким образом лонжерон значительно усилен, особенно в наиболее напряженных корневых сечениях несущих плоскостей. Для информации: масса пластин-накладок равна 6,8 г, масса стенок из пенопласта — 3,2 г и из фанеры — 7 г. В общей сложности на стенках и соединительных вставках получается потеря 4 г против предложенной в исходном варианте неудачной схемы, включающей частичную накладную стенку из бальзы. Дополнительно примерно 7 г потеряно на переходе от нервюр толщиной 1,6 мм к 2,2 — 2,3 мм.

Обшивка центральной зоны сохранена без изменений, законцовки также. Расчетный общий выигрыш по массе составил 44,7 г по материалу отдельных частей. Сборка проводилась путем проливки швов на собранных насухо на стапелях каркасах (по отдельности два центроплана ). Смола марки К-153 перед нанесением разводилась этиловым спиртом для небольшого снижения вязкости. Контроль за впитыванием велся до полной желатинизации.

Смола по мере ухода в поры и щели наносилась дополнительно для образования во всех углах «галтелей» радиусом около 2 мм. Излишки перед желатинизацией удалялись «шаблоном» из кольцевой головки обычной булавки. Такая технология сборки необычна и более трудоемка. Зато она дает просто удивительные результаты по прочности на всех древесных материалах, не говоря уже о бальзе. Временные затраты невелики — сборка одной секции ведется за один замес смолы.

После съема с каркаса остается лишь дополнительно пролить недоступные участки стенки лонжерона и установить косынки хвостиков нервюр, причем по той же технологии. Некоторые скажут, что «смологалтельная» методика несопоставима со столь облегченными конструкциями. Чтобы четко ответить на возможные вопросы, количество использованного связующего тщательно учитывалось. В итоге оказалось, что на полную сборку четырех секций крыла пошло 3,85 см смолы, что при ее плотности 1,8 г/см3 дает почти 7 г массы.

Если учесть, что выигрыш по надежности и прочности не имеет равных, то дальнейших комментариев к данной технологии не потребуется. Тем более если еще вспомнить, что часть использованной смолы срезалась при окончательной профилировке крыла. Собранные и зачищенные секции, оказались на удивление легкими — все четыре имели общую массу 70 г! Конечно, сращивание и обшивка центральной зоны, а также пленочная лавсановая обтяжка крыла площадью 39 дм2 привнесли свои поправки.

Но и конечный результат оказался восхитительным — 130 г! Это-то при размахе практически в два метра... Когда красивое «пуховое» изделие (обтянутое по центроплану оранжевым лавсаном толщиной 30 мкм и по «ушкам» коричнево-вишневым, в полтора раза более тонким) немного отлежалось, оно было тщательно осмотрено, после чего для предотвращения Замятин от ударов на размахе около 100 мм часть передней и задней кромок были вырезаны и заменены твердыми липовыми вставками.

Выправление крыла не принесло проблем, как и задание отрицательных круток порядка 4 мм по концам «ушек». По оси крыла в переднюю кромку вклеен штырь из алюминиевой спицы диаметром 4мм, а вблизи задней — деревянный фигурный штырь под короткое резиновое кольцо. Надо отметить, что эксплуатационные свойства модели очень во многом зависят как от качества приклейки лавсановой пленки, так и от надежности удержания на ее поверхности штатного слоя прозрачной краски (ведь, по сути, мы приклеиваем не сам лавсан, а краску!).

Случайные отслоения обшивки нередко могут создать аварийные ситуации или, в лучшем случае, вызвать поломку потерявших устойчивость нервюр. Во всех поперечных деталях каркаса крыла полезно выполнить отверстия-отдушины, через которые будет выходить воздух, нагревшийся и расширившийся в процессе натяжения обшивки горячим утюгом.

(Автор: В.КИБЕЦ, инженер-конструктор ЦКТБМ)

Основные геометрические параметры модели  радиоуправляемого планера

Рис. 1. Основные геометрические параметры модели радиоуправляемого планера.

Исходная конструкция радиоуправляемого планера

Рис. 2. Исходная конструкция радиоуправляемого планера «Ризер» американской фирмы CUT